

YB-semitrusses and left non-degenerate solutions to the Yang-Baxter equation

llaria Colazzo I.Colazzo@exeter.ac.uk

Hopf Algebras and Galois Module Theory 3rd June 2022

Overview							
Goal							
The Yang-Baxter equation Skew braces and the YBE							
The structure monoid and YB-semitrusses The structure monoid							
Semitrusses							
The associated solution to a YB-semitruss When it is bijective? An application							
References							

Goal	
The Yang-Baxter equation	
The structure monoid and YB-semitrusses	
The associated solution to a YB-semitruss	
References	

	in a streat out	
Iviain	motivation	

	F	-ir	nd	a	an	d	d	les	SC	ri	be					çei ax					20	re	ti	C	so	slı	ut	ic	n n	S	of	F	
														Č				1															

Goal
The Yang-Baxter equation Skew braces and the YBE
The structure monoid and YB-semitrusses
The associated solution to a YB-semitruss
References

Th	e Yang-Baxter equation
	 k - a field V - a k-vector space A linear map R : V ⊗ V → V ⊗ V is a solution to the Yang-Baxter equation (YBE) if
	$(R \otimes \mathrm{id})(\mathrm{id} \otimes R)(R \otimes \mathrm{id}) = (\mathrm{id} \otimes R)(R \otimes \mathrm{id})(\mathrm{id} \otimes R).$
	<pre>''Maybe it would be interesting to study set-theoretical solutions to (9.1)''</pre>

The Yang-Baxter equation

- ► *k* a field
- V a k-vector space

A linear map $R: V \otimes V \to V \otimes V$ is a solution to the Yang-Baxter equation (YBE) if

 $(R \otimes \mathrm{id})(\mathrm{id} \otimes R)(R \otimes \mathrm{id}) = (\mathrm{id} \otimes R)(R \otimes \mathrm{id})(\mathrm{id} \otimes R).$

Drienfeld, '92

"Maybe it would be interesting to study set-theoretical solutions to (9.1)"

V.G. Drinfeld,

On some unsolved problems in quantum group theory, Quantum Groups, Lecture Notes Math. 1510, Springer-Verlag, Berlin, 1992, 1–8.

A set-theoretic solution (to the YBE) is a pair (X, r) where X is a non-empty set and $r: X \times X \to X \times X$ is a map such that

 $(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r)$

Write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

where $\lambda_x, \rho_x : X \to X$.

r is left (resp. right) non-degenerate if λ_x (resp. ρ_x) is bijective, for any x ∈ X.
 non-degenerate if it is both left and right non-degenerate.

A set-theoretic solution (to the YBE) is a pair (X, r) where X is a non-empty set and $r: X \times X \to X \times X$ is a map such that

 $(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r)$

Write

$$r(x,y) = \left(\frac{\lambda_x(y)}{\lambda_x(y)}, \rho_y(x)\right)$$

where $\lambda_x, \rho_x : X \to X$.

r is left (resp. right) non-degenerate if λ_x (resp. ρ_x) is bijective, for any x ∈ X.

non-degenerate if it is both left and right non-degenerate

A set-theoretic solution (to the YBE) is a pair (X, r) where X is a non-empty set and $r: X \times X \to X \times X$ is a map such that

 $(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r)$

Write

$$r(x,y) = \left(\lambda_x(y), \rho_y(x)\right)$$

where $\lambda_x, \rho_x : X \to X$.

r is left (resp. right) non-degenerate if λ_x (resp. ρ_x) is bijective, for any x ∈ X.

non-degenerate if it is both left and right non-degenerate

A set-theoretic solution (to the YBE) is a pair (X, r) where X is a non-empty set and $r: X \times X \to X \times X$ is a map such that

 $(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r)$

Write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

where $\lambda_x, \rho_x : X \to X$.

- r is left (resp. right) non-degenerate if λ_x (resp. ρ_x) is bijective, for any x ∈ X.
- non-degenerate if it is both left and right non-degenerate.

Involutive non-degenerate solutions	
['99] Etingof, Schedler & Soloviev	
['99] Gateva-Ivanova & Van den Bergh	
['07] Rump	
['14] Cedó, Jespers & Okninski	
Bijective non-degenerate solutions	
Pool L. V. P. 7L.	

 Involutive non-degenerate solutions ['99] Etingof, Schedler & Soloviev ['99] Gateva-Ivanova & Van den Bergh (Ring and group theoretical tools) 				
['07] Rump ['14] Cedó, Jespers & Okninski (Braces)				
Bijective non-degenerate solutions				

Involutive non-degenerate solutions						
['99] Etingof, Schedler & Soloviev						
['99] Gateva-Ivanova & Van den Bergh						
(Ring and group theoretical tools)						
['07] Rump						
['14] Cedó, Jespers & Okninski						
(Braces)						
Bijective non-degenerate solutions						

		1																																
				In	V	зI	ut	I٧	'e	n	or	J-	de	g	er	le	ra	te	9 9	50	lu	Iti	0	ns	5									
			1	['9	01		E+	in	, de	٦f	Ċ	2	ho	d	or	Ç.	, ·	s,		~	io	.,												
						1	<u>с</u>		'B'	J	, ~	,Ç	ne	u		, C	×.	5		יי י	IC.	v 		۰.										
				' 9	9]																													
			. ['0	71																													
															o .	~																		
			÷	['1	4]							p	ers	5.0	£	U	K	nII	ns	κı														
							(E	Bra	ac	es)																							
		1		D			È.																											
				В			UI Y	VE	11.5							ena	d L				u i													

Involutive non-degenerate solutions								
['99] Etingof, Schedler & Soloviev								
['99] Gateva-Ivanova & Van den Bergh								
(Ring and group theoretical tools)								
['07] Rump								
['14] Cedó, Jespers & Okninski								
(Braces)								
D'' a ti ' a man da manata a la tiana								
Bijective non-degenerate solutions								
['00] Lu, Yan & Zhu								
['00] Soloviev								
(Ring and group theoretical tools)								
['17] Guarnieri & Vendramin								

Involutivo non dogonorato colutione									
Involutive non-degenerate solutions									
['99] Etingof, Schedler & Soloviev									
['99] Gateva-Ivanova & Van den Bergh									
['07] Rump									
['14] Cedó, Jespers & Okninski									
Bijective non-degenerate solutions									
['00] Lu, Yan & Zhu									
['00] Soloviev									
(Ring and group theoretical tools									
['17] Guarnieri & Vendramin									
(Skew braces)									

NI	
Not necessarily bijective solutions	
['17] · Lebed · · · · · · · · · · · · · · · · · · ·	
(idempotent solutions)	
['20] Cvetko-Vah & Verwimp	
(cubic solutions and skew lattices)	
['17] Catino, IC & Stefanelli	
(left non-degenerate solutions and left cancellative semi-braces)	
['19] Jespers & Van Antwerpen	
(degenerate solutions and semi-braces)	
['21] IC, Jespers, Van Antwerpen & Verwimp	
(left non-degenerate solutions ↔ YB-semitruss)	
(
	_

Examples Set-theoretic solutions		

Example (Run	np, 2007)	
Let $(R,+,\cdot)$ be	a radical ring	
$r(x, \cdots, r(x, n)))))))))))))))$	$y) = (-x + x \circ y, \overline{(-x + x)})$	$(x \circ y) \circ (x \circ y) + \cdots + \cdots + \cdots$
is an involutive	non-degenerate solution.	

Example (Rump	o, 2007)			
Let $(R,+,\cdot)$ be a	radical ring			
Put <i>x</i> <i>R</i> is radio	$\circ y = x + xy + zal$ if (R, \circ) is a g	y. group		
	$= (-x + x \circ y, ($		$\overline{()} \circ x \circ v$	
is an involutive no	n-degenerate sol	ution.		

Example (Rump, 2007) Let $(R, +, \cdot)$ be a radical ring $r(x,y) = (-x + x \circ y, \overline{(-x + x \circ y)}) \circ x \circ y)$ is an involutive non-degenerate solution. 10/35

S	kew braces		
	A skew brace is a ► (B,+) and (E ► for any a, b, c	,	E
		$a\circ(b+c)=a\circ b-c$	$a + a \circ c$
	If in addition (<i>B</i> , - of abelian type.	-) is abelian $(B, +, \circ)$ is	a brace or a skew brace

Skew braces														
· · · · · · · · · · · · · · · · · · ·														
A skew brace is a triple $(B, +, \circ)$ such that														
• $(B,+)$ and (B,\circ) be groups	S													
▶ for any $a, b, c \in B$														
$a\circ (b+c)=a\circ b-a+a\circ c$														
$a \circ (b + c) =$	$= a \circ b - a + a \circ c$													
	$= a \circ b - a + a \circ c$ B, +, \circ) is a brace or a skew brace													
If in addition $(B,+)$ is abelian (
If in addition $(B,+)$ is abelian (
If in addition $(B,+)$ is abelian (
If in addition $(B,+)$ is abelian (
If in addition $(B,+)$ is abelian (

Examples			
Lrampies			
Skew braces			
Braces			

Skew braces and solutions

Theorem (Guarnieri and Vendramin, 2017)

Let *B* be a skew brace. Define $r : B \times B \rightarrow B \times B$ by

$$r(x,y) = r(-x + x \circ y, \overline{(-x + x \circ y)} \circ x \circ y).$$

Then r is a bijective non-degenerate solution of the YBE. Moreover,

r is involutive $\iff (B, +)$ is abelian.

The structure group

Definition (Etingof, Schedler and Soloviev, 1992

Let (X, r) be a solution. Define the structure group

$$G(X, r) = \operatorname{gr}(X \mid x \circ y = \lambda_x(y) \circ \rho_y(x))$$

From a solution to a skew brace

Theorem (Smoktunowicz and Vendramin, 2018)

If (X, r) is a bijective non-degenerate solution, then there exists a unique skew brace structure on G(X, r) such that its associated solution $r_{G(X,r)}$ satisfies

$$r_{G(X,r)}(\iota \times \iota) = (\iota \times \iota)r$$

where $\iota: X \to G(X, r)$ is the canonical map.

The main issue of this correspondence is that i is not an injective map in general. **Example.** Let X be a set, $f, g \in \text{Sym}(X)$ such that fg = gf. It is easy to see that r is injective $\iff fg = \text{id} \iff r$ is involutive

From a solution to a skew brace

Theorem (Smoktunowicz and Vendramin, 2018)

If (X, r) is a bijective non-degenerate solution, then there exists a unique skew brace structure on G(X, r) such that its associated solution $r_{G(X,r)}$ satisfies

$$r_{G(X,r)}(\iota \times \iota) = (\iota \times \iota)r$$

where $\iota: X \to G(X, r)$ is the canonical map.

The main issue of this correspondence is that ι is not an injective map in general. **Example.** Let X be a set, $f, g \in Sym(X)$ such that fg = gf. It is

| r | is injective $| \iff | fg = id | \iff | r |$ is involutive

From a solution to a skew brace

Theorem (Smoktunowicz and Vendramin, 2018)

If (X, r) is a bijective non-degenerate solution, then there exists a unique skew brace structure on G(X, r) such that its associated solution $r_{G(X,r)}$ satisfies

$$r_{G(X,r)}(\iota \times \iota) = (\iota \times \iota)r$$

where $\iota: X \to G(X, r)$ is the canonical map.

The main issue of this correspondence is that ι is not an injective map in general.

Example. Let X be a set, $f, g \in Sym(X)$ such that fg = gf. It is easy to see that

r is injective \iff *fg* = id \iff *r* is involutive

Goal	
The Yang-Baxter equation	
The structure monoid and YB-semitrusses The structure monoid Semitrusses	
The associated solution to a YB-semitruss	
References	

The structure monoid

Definition

Let (X, r) be a solution. Define the structure monoid

$$M(X,r) = \langle X \mid x \circ y = \lambda_x(y) \circ \rho_y(x) \rangle$$

E	X	a	n	n	ol	e	S																									
St	rı	IC	tu	re	g	ro	up	S	ar	nd	s	tru	IC	tu	re	n	10	nc	oid	s												

Solutions and the structure monoid

Theorem (Gateva-Ivanova and Majid, 2008)

If (X, r) is a solution, then it is possible to extend the solution r to M(X, r), i.e.

 $r_{M(X,r)|_{X\times X}}=r$

and the map $\iota: X \to M(X, r)$ is injective.

Clearly, we cannot expect M(X, r) has a skew brace structure. However, we can have something with the same flavor.

The derived monoid

Let (X, r) be a solution. Define the (left) derived monoid

$$\mathcal{A}(X,r) = \langle X \mid x + \lambda_x(y) = \lambda_x(y) + \lambda_{\lambda_x(y)} \rho_y(x) \rangle$$

Ex. Let X be a left non-degenerate solution. We can define the (left) derived solution (X, s) in the following way

 $s: X \times X \to X \times X, \quad (x,y) \mapsto (y, \lambda_y \rho_{\lambda_x^{-1}(y)(x)}).$

It is easy to see that A(X, r) = M(X, s).

The connection between structure monoid and derived monoid

Theorem (Lu, Yan and Zhu 2000, Soloviev 2000, Jespers, Kubat and Van Antwerpen 2019, Cedó, Jespers and Verwimp 2021)

Let (X, r) be a left non-degenerate solution. Then λ induces a monoid homomorphism

$$\lambda: (M(X,r), \circ) \rightarrow \operatorname{Aut}(A(X,r), +)$$

with $\lambda_x(y) = \lambda_x(y)$ and there exists $\pi : M(X, r) \to A(X, r)$ a bijective 1-cocycle with respect to λ (i.e. $\pi(a \circ b) = \pi(a) + \lambda_a(\pi(b))$

The connection between structure monoid and derived monoid

Theorem (Lu, Yan and Zhu 2000, Soloviev 2000, Jespers, Kubat and Van Antwerpen 2019, Cedó, Jespers and Verwimp 2021)

Let (X, r) be a left non-degenerate solution. Then λ induces a monoid homomorphism

$$\lambda: (M(X, r), \circ) \rightarrow \operatorname{Aut}(A(X, r), +)$$

with $\lambda_x(y) = \lambda_x(y)$ and there exists $\pi : M(X, r) \to A(X, r)$ a bijective 1-cocycle with respect to λ satisfying $\pi(x) = x$.

Hence, we have an embedding

$$M(X,r)
ightarrow A(X,r)
times \operatorname{Im}(\lambda).$$

Identifying $a \in M(X, r)$ with $\pi(a)$. The set M(X, r) is equipped with two monoid operations

- ► (M(X, r), ∘) where ∘ is the monoid operation of the structure monoid
- (M(X, r), +) where $a + b = a \circ \lambda_a^{-1}(b)$

and satisfies

 $a \circ (b + c) = a \circ b + \lambda_a(c).$

Definition (Brzeziński, 2018)

A semitruss is a quadruple $(A, +, \circ, \lambda)$ s.t.

Ex. Let (X, r) be a left non-degenerate solution $(M(X, r), +, \circ, \lambda)$ is a semitruss.

It is easy to prove that $(M(X, r), +, \circ, \lambda)$ is a left semitruss such that

$$\blacktriangleright a + \lambda_a(b) = a \circ b$$

- ► $\lambda : (M(X, r), \circ) \rightarrow Aut(M(X, r), +), a \mapsto \lambda_a$ is a semigroup morphism
- $\sigma: (M(X, r), +) \rightarrow \operatorname{End}(M(X, r), +), a \mapsto \sigma_a \text{ is a semigroup}$ anti-morphism such that $a + b = b + \sigma_a(b)$, where $\sigma_a(b) = \lambda_a \rho_{\lambda_b^{-1}(a)}(b).$

•
$$\lambda_a \sigma_b = \sigma_{\lambda_a(b)} \lambda_b$$

This leads to Definition (IC, Jespers, Van Antwerpen, Verwimp, 2021) A tuple $(A, +, \circ, \lambda, \sigma)$ is a YB-semitruss if \blacktriangleright (A, +, \circ , λ) is a semitruss • $\sigma: A \to Map(A, A), a \mapsto \sigma_a$ is a mapping $\blacktriangleright \lambda_a \in \operatorname{Aut}(A, +) \text{ and } \lambda_a \lambda_b = \lambda_{a \circ b}$ s.t $\blacktriangleright a + \lambda_a(b) = a \circ b$ $\blacktriangleright a + b = b + \sigma_b(a)$ ▶ $\sigma_a \in \text{End}(A, +)$ and $\sigma_{a+b} = \sigma_b \sigma_a$ $\blacktriangleright \sigma_{\lambda_a(c)}\lambda_a(b) = \lambda_a \sigma_c(b)$

Examples

Any skew brace (B, +, ∘) is a YB-semitruss, with respect to the λ map and σ defined by σ _a (b) = −b + a + b.
Let (X, r) be a left non-degenerate solution. Then $(M(X, r), +, \circ, \lambda, \sigma)$ is a YB-semitruss with $\sigma_b(a) = \lambda_b \rho_{\lambda_a^{-1}(b)}(a).$
Ex. For $r(x, y) = (y, y)$, we get $x \circ y = y \circ y$, $x + y = y + y$, $\lambda_x(y) = y$ and $\sigma_y(x) = \rho_y(x) = y$.
Let A be a set, $\lambda : A \to \text{Sym}(A)$ satisfying $\lambda_a \lambda_b = \lambda_{\lambda_a(b)}$. Define $a + b = b$ (note that $\lambda_a \in \text{Aut}(A, +)$) and
$a \circ b = \lambda_a(b), \sigma_b(a) = b$. Then $(A, +, \circ, \lambda, \sigma)$ is aYB-semitruss.

Examples

• Any skew brace $(B, +, \circ)$ is a YB-semitruss, with respect to the λ map and σ defined by $\sigma_a(b) = -b + a + b$.
• Let (X, r) be a left non-degenerate solution. Then $(M(X, r), +, \circ, \lambda, \sigma)$ is a YB-semitruss with $\sigma_b(a) = \lambda_b \rho_{\lambda_a^{-1}(b)}(a).$
Ex. For $r(x, y) = (y, y)$, we get $x \circ y = y \circ y$, $x + y = y + y$, $\lambda_x(y) = y$ and $\sigma_y(x) = \rho_y(x) = y$.
Let A be a set, $\lambda : A \to \text{Sym}(A)$ satisfying $\lambda_a \lambda_b = \lambda_{\lambda_a(b)}$.
Define $a + b = b$ (note that $\lambda_a \in \operatorname{Aut}(A, +)$) and
$a \circ b = \lambda_a(b), \sigma_b(a) = b.$ Then $(A, +, \circ, \lambda, \sigma)$ is
aYB-semitruss.

Examples

Any skew brace $(B, +, \circ)$ is a YB-semitruss, with respect to the λ map and σ defined by $\sigma_a(b) = -b + a + b$. • Let (X, r) be a left non-degenerate solution. Then $(M(X, r), +, \circ, \lambda, \sigma)$ is a YB-semitruss with $\sigma_b(a) = \lambda_b \rho_{\lambda_a^{-1}(b)}(a).$ **Ex.** For r(x, y) = (y, y), we get $x \circ y = y \circ y$, x + y = y + y, $\lambda_x(y) = y$ and $\sigma_y(x) = \rho_y(x) = y$. • Let A be a set, $\lambda : A \to \text{Sym}(A)$ satisfying $\lambda_a \lambda_b = \lambda_{\lambda_a(b)}$. Define a + b = b (note that $\lambda_a \in Aut(A, +)$) and $a \circ b = \lambda_a(b), \ \sigma_b(a) = b$. Then $(A, +, \circ, \lambda, \sigma)$ is aYB-semitruss

The associated solution to a YB-semitruss

Theorem (IC, Jespers, Van Antwerpen, Verwimp, 2021)

Let $(A, +\circ, \lambda, \sigma)$ a YB-semitruss. Then

$$r(x,y) = (\lambda_x(y), \lambda_{\lambda_x(y)}^{-1}\sigma_{\lambda)x(y)}(x))$$

is a left non-degenerate solution

Moreover,

Let (X, r) be a left non-degenerate solution then the structure monoid is a YB-semitruss and the solution associated to it is precisely the solution defined by Gateva-Ivanova and Majid with

$$r_{M(X,r)|_{X\times X}} =$$

Goal	
The Yang-Baxter equation	
The structure monoid and YB-semitrusses	
The associated solution to a YB-semitruss When it is bijective?	
When it is bijective?	
When it is bijective? An application	
When it is bijective? An application	

					5 C bij					20		S			It	io	n		0		.	YI	B	-S	er	n	itı	ru	SS	5						
	÷.							÷.																												
	1	Λ	1		~)		7)	1 :	<u>`</u> د	ΥĪ	R_	Se	'n	nit	ru	ISS	5																		
	()	A,	, –†	-,	0	, ⁄	۰, ۱	σ_{1}) c				50																							
																			ive	,	÷	\Rightarrow	γ	a	Ē	A.	σ	. is	s ł	siie	ec	ti	ve	, c		
																			ive	Э [°]	¢	⇒	þ	a	∈.	Α,	σ	a is	s k	oije	ec	ti	ve) }		
																			ive	5	¢	⇒	¦∨ N	a	€.	Α,	σ	a is	s k	oije	ec	ti	ve	2 2 2		
																			ive	5	÷	⇒	k N	a	€.	Α,	σ		s k	oije	ec	ti	ve	2		
																			ive	5	÷	⇒		a	∈.	<i>A</i> ,	σ_{i}		s k	oije	ec	ti	ve	2		
																			ive	2	÷	⇒		a	€.	A,	σ		s k	oije S	ec	ti	ve			
																			ive					a	€.	A,	σ_{i}		s k	oije N N	ec		ve			
																			ive					a	€.	A ,			s k	oije C	ec	ti	ve	2		
																			ive						€.	Α,	σ			oij(ec a	ti	Ve	2		
																			ive					a	€.	Α,	σ_{i}		5	bije N		ti	ve			
																			ive	2				a	€.	Α,	σ_{i}		s k	bije B		ti	ve			
																			ive						€.	Α,	σ		s t	oij(ec		Ve	2		

The associated solution to a YB-semitruss The opposite YB-semitruss Theorem $(A, +, \circ, \lambda, \sigma)$ a YB-semitruss with σ_a bijective ($\forall a \in A$). Then $r_A^{-1}(a,b) = (\sigma_a^{-1}\lambda_a(b), \lambda_{\sigma_a^{-1}\lambda_a(b)}^{-1}(a))$

Moreover, $(A, +^{op}, \circ, \overline{\lambda}, \overline{\sigma})$ is a YB-semitruss with $\overline{\lambda}_a = \sigma_a^{-1} \lambda_a$ and $\overline{\sigma}_a = \sigma_a^{-1}$. Its associated solution is r_A^{-1} .

Let (X, r) be a left non-degenerate solution. What is the relation between (X, r) being right non-degenerate and r being bijective?

31/35

Let (X, r) be a left non-degenerate solution. What is the relation between (X, r) being right non-degenerate and r being bijective?

 Any finite involutive left non-degenerate solution is non-degenerate.

[Rump, 2005]
[Jespers and Okniński, 2005]
An example of an infinite involutive solution that is left
non-degenerate but not right non-degenerate.
[Rump, 2005]
Any non-degenerate solution such that $\lambda_x = \lambda_y$ implies $x = y$
is bijective.
[Cedó, Jespers and Verwimp, 2021].
Any finite bijective left non-degenerate solution is right [11]
non-degenerate
[Castelli, Catino, Stefanelli, 2021]

Let (X, r) be a left non-degenerate solution. What is the relation between (X, r) being right non-degenerate and r being bijective?

 Any finite involutive left non-degenerate solution is non-degenerate.

> [Rump, 2005] [Jespers and Okniński, 2005]

An example of an infinite involutive solution that is left non-degenerate but not right non-degenerate.

[Rump, 2005]

Any non-degenerate solution such that $\lambda_x = \lambda_y$ implies x = y is bijective.

[Cedó, Jespers and Verwimp, 2021]

Any finite bijective left non-degenerate solution is right non-degenerate

[Castelli, Catino, Stefanelli, 2021]

Let (X, r) be a left non-degenerate solution. What is the relation between (X, r) being right non-degenerate and r being bijective?

- Any finite involutive left non-degenerate solution is non-degenerate.
 - [Rump, 2005] [Jespers and Okniński, 2005]
- An example of an infinite involutive solution that is left non-degenerate but not right non-degenerate.

[Rump, 2005]

Any non-degenerate solution such that λ_x = λ_y implies x = y is bijective.

[Cedó, Jespers and Verwimp, 2021]

Any finite bijective left non-degenerate solution is right non-degenerate

[Castelli, Catino, Stefanelli, 2021]

Let (X, r) be a left non-degenerate solution. What is the relation between (X, r) being right non-degenerate and r being bijective?

- Any finite involutive left non-degenerate solution is non-degenerate.
 - [Rump, 2005] [Jespers and Okniński, 2005]
- An example of an infinite involutive solution that is left non-degenerate but not right non-degenerate.

[Rump, 2005]

Any non-degenerate solution such that λ_x = λ_y implies x = y is bijective.

[Cedó, Jespers and Verwimp, 2021]

 Any finite bijective left non-degenerate solution is right non-degenerate

[Castelli, Catino, Stefanelli, 2021]

An application

Theorem

If (X, r) is a finite left non-degenerate solution, then

r is bijective $\iff (X, r)$ is right non-degenerate

	T		e in	mi		ati		٦: :	·		b	'n	р	rc)V(en	r ik	by	C	la	st	el	C	a	tir		18	n	d				
	St																																
			e in	m		ati		٦° -					o.r	r t	th		fa	ct	: rt	:h	at	t		sti		ct			n	n	d		
	is	а	Y	B		nit	tri	IS																									

An application

Theorem

If (X, r) is a finite left non-degenerate solution, then

r is bijective $\iff (X, r)$ is right non-degenerate

An application

Theorem

If (X, r) is a finite left non-degenerate solution, then

r is bijective $\iff (X, r)$ is right non-degenerate

The implication \Rightarrow has been proven by Castelli, Catino and Stefanelli.

The implication \Leftarrow is based on the fact that the structure monoid is a YB-semitruss.

al · · · ·																			
ie Yang-B	axter	equal	tion																
o structur	o mo	noid	and	VR	sor	nitr													
ie structur	einio	noiu a	anu.	LD		IIILI	u550	. 5											
ie associat	ed so	lutior	ı to	a)	/B-s	semi	itrus												
ne associat	ed so	lutior	ı to	a \	/B-s	semi	itrus												
ie associat	ed so	lutior	ı to	a)	/B-s	semi	itru												
	ed so	lution	n to	a)	∕B-s	semi	itru												
ne associat eferences	ed so	lutior	n to	a \	/B-s	semi	itrus												
	ed so	lutior	n to	a \	∕B-s	semi	itrus												
	ed so	lutior	1 to	a \	∕B-s	semi	itrus												
	ed so	lutior	1 to	a `	(B-s	semi	itrus												
	ed so	lution	to	a `	/B-s	semi	itrus												
	ced so	lutior	to	a `	(B-s	semi	itrus												
	ced so	lution	n to	a \	B -s	semi	itrus												
	ed so	lutior	n to	á)	/B-s	semi	itrus												
	e Yang-B	e Yang-Baxter	e Yang-Baxter equa	e Yang-Baxter equation															

Ref

Reter	ences							
	T. Brzeziński,							
	Towards semi-trusses, Rev. Roumaine Math. Pures Appl. 63(2) (2018), 75–89.							
	F. Cedó, E. Jespers and J. Okniński,							
	Braces and the Yang-Baxter equation, Comm. Math. Phys. 327 (2014), 101–116.							
	F. Cedó, E. Jespers and C. Verwimp,							
	Structure monoids of set-theoretic solutions of the Yang-Baxter equation, Publ, Mat., 65:499–528, 2021.							
	M. Castelli, F. Catino and P. Stefanelli, Left non-degenerate set-theoretic solutions of the yang-baxter equation and dynamical ex sets, Journal of Algebra and Its Applications, 2021.	ten	sion	s of	q-cy	/cle		
	I. Colazzo, E. Jespers, A. Van Antwerpen and C. Verwimp,							
	Left non-degenerate set-theoretic solutions of the yang-baxter equation and semitrusses, arXiv:2109.04978, 2021.							
	V.G. Drinfeld,							
· · · · · ·	On some unsolved problems in quantum group theory, Quantum Groups, Lecture Notes Math. 1510, Springer-Verlag, Berlin, 1992, 1–8.							
	T. Gateva-Ivanova and S. Majid,							
	Matched pairs approach to set theoretic solutions of the Yang–Baxter equation, J. Algebra 319(4) (2008), 1462–1529.							

References

L. Guarnieri and L. Vendramin,											
Skew braces and the Yang-Baxter equation, Math. Comp. 86 (2017), no. 307, 2519–2534.											
E. Jespers, Ł. Kubat and A. Van Antwerpen,											
 The structure monoid and algebra of a non-degenerate set-theoretic sol Trans. Amer. Math. Soc. 372(10) (2019), 7191–7223.	lutior	of t	he \	Yang	-Ba	xte	r eq	juat	ion,		
E. Jespers and J. Okniński,											
Monoids and groups of I-type, Algebras and Repres. Theory 8 (2005), 709–729.											
V. Lebed and L. Vendramin,											
 On structure groups of set-theoretic solutions to the Yang-Baxter equal Proc. Edinb. Math. Soc. (2), 62(3) (2019), 683–717.	tion,										
JH. Lu, M. Yan and YC. Zhu,											
On the set-theoretical Yang-Baxter equation, Duke Math. J. 104(1) (2000), 1–18.											
W. Rump,											
 Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307 (2007), 153–170.											
A. Soloviev.											
Non-unitary set-theoretical solutions to the quantum Yang-Baxter equa	tion,										
Math. Res. Lett. 7(5-6) (2000), 577–596.											

