YB-semitrusses and left non-degenerate solutions to the Yang-Baxter equation

Ilaria Colazzo

I.Colazzo@exeter.ac.uk

Hopf Algebras and Galois Module Theory 3rd June 2022

Overview

Goal
The Yang-Baxter equation Skew braces and the YBE

The structure monoid and YB-semitrusses
The structure monoid Semitrusses

The associated solution to a YB-semitruss When it is bijective?
An application
References

Goal

The Yang-Baxter equation

The structure monoid and. YB-semitrusses

The associated solution to a YB-semitrụss

References
$2 / 35$

Main motivation

Find and describe left non-degenerate set-theoretic solutions of the Yang-Baxter equation.

The Yang-Baxter equation Skew braces and the YBE

The structure monoid and YB-semitrusses

The associated solution to a YB-semitruss

References

The Yang-Baxter equation

- k - a field
- V - a k-vector space

A linear map $R: V \otimes V \rightarrow V \otimes V$ is a solution to the Yang-Baxter equation (YBE) if

$$
(R \otimes \mathrm{id})(\mathrm{id} \otimes R)(R \otimes \mathrm{id})=(\mathrm{id} \otimes R)(R \otimes \mathrm{id})(\mathrm{id} \otimes R)
$$

Drienfeld, '92
''Maybe it would be interesting to study
set-theoretical solutions to (9.1)',

The Yang-Baxter equation

- k - a field
- V - a k-vector space

A linear map $R: V \otimes V \rightarrow V \otimes V$ is a solution to the Yang-Baxter equation (YBE) if

$$
(R \otimes \mathrm{id})(\mathrm{id} \otimes R)(R \otimes \mathrm{id})=(\mathrm{id} \otimes R)(R \otimes \mathrm{id})(\mathrm{id} \otimes R)
$$

Drienfeld, '92

''Maybe it would be interesting to study set-theoretical solutions to (9.1)',

固 V.G. Drinfeld,
On some unsolved problems in quantum group theory,
Quantum Groups, Lecture Notes Math. 1510, Springer-Verlag, Berlin, 1992, 1-8.

Set-theoretic solutions

A set-theoretic solution (to the YBE) is a pair (X, r) where X is a non-empty set and $r: X \times X \rightarrow X \times X$ is a map such that

$$
(r \times \mathrm{id})(\mathrm{id} \times r)(r \times \mathrm{id})=(\mathrm{id} \times r)(r \times \mathrm{id})(\mathrm{id} \times r)
$$

Write

$$
r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

where $\lambda_{x}, \rho_{X}: X \rightarrow X$.
$\geqslant r$ is left (resp. . right) non-degenerate if $\lambda_{x}\left(\right.$ resp. . $\left.\rho_{x}\right)$ is
bijective, for any $x \in X$.

- non-degenerate if it is both left and right non-degenerate:

Set-theoretic solutions

A set-theoretic solution (to the YBE) is a pair (X, r) where X is a non-empty set and $r: X \times X \rightarrow X \times X$ is a map such that

$$
(r \times \mathrm{id})(\mathrm{id} \times r)(r \times \mathrm{id})=(\mathrm{id} \times r)(r \times \mathrm{id})(\mathrm{id} \times r)
$$

Write

$$
r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

where $\lambda_{x}, \rho_{X}: X \rightarrow X$.
$-r$ is left (resp. right) non-degenerate if λ_{X} (resp. ρ_{X}) is bijective, for any $x \in X$.
P non-degenerate if it is both left and right non-degenerate.

Set-theoretic solutions

A set-theoretic solution (to the YBE) is a pair (X, r) where X is a non-empty set and $r: X \times X \rightarrow X \times X$ is a map such that

$$
(r \times \mathrm{id})(\mathrm{id} \times r)(r \times \mathrm{id})=(\mathrm{id} \times r)(r \times \mathrm{id})(\mathrm{id} \times r)
$$

Write

$$
r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

where $\lambda_{x}, \rho_{X}: X \rightarrow X$.
-r is left (resp. right) non-degenerate if λ_{X} (resp. ρ_{X}) is bijective, for any $x \in X$.
P non-degenerate if it is both left and right non-degenerate.

Set-theoretic solutions

A set-theoretic solution (to the YBE) is a pair (X, r) where X is a non-empty set and $r: X \times X \rightarrow X \times X$ is a map such that

$$
(r \times \mathrm{id})(\mathrm{id} \times r)(r \times \mathrm{id})=(\mathrm{id} \times r)(r \times \mathrm{id})(\mathrm{id} \times r)
$$

Write

$$
r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

where $\lambda_{x}, \rho_{X}: X \rightarrow X$.
$-r$ is left (resp. right) non-degenerate if λ_{X} (resp. ρ_{X}) is bijective, for any $x \in X$.

- non-degenerate if it is both left and right non-degenerate.

Timeline of the study

- Involutive non-degenerate solutions
['99] Etingof, Schedler \& Soloviev
['99] Gateva-Ivanova \& Van den Bergh
- Bijective non-degenerate solutions

Timeline of the study

- Involutive non-degenerate solutions
['99] Etingof, Schedler \& Soloviev
['99] Gateva-Ivanova \& Van den Bergh (Ring and group theoretical tools)
[!07] Rump
['14]. Cedó, Jespers \& Okninski
- Bijective non-degenerate solutions

Timeline of the study

- Involutive non-degenerate solutions
['99] Etingof, Schedler \& Soloviev
['99] Gateva-Ivanova \& Van den Bergh
['07] Rump
['14] Cedó, Jespers \& Okninski
- Bijective non-degenerate solutions

Timeline of the study

- Involutive non-degenerate solutions
['99] Etingof, Schedler \& Soloviev
['99] Gateva-Ivanova \& Van den Bergh
['07] Rump
['14] Cedó, Jespers \& Okninski (Braces)
- Bijective non-degenerate solutions

Timeline of the study

- Involutive non-degenerate solutions
['99] Etingof, Schedler \& Soloviev
['99] Gateva-Ivanova \& Van den Bergh
['07] Rump
['14] Cedó, Jespers \& Okninski
- Bijective non-degenerate solutions
['00] Lu, Yan \& Zhu
['00] Soloviev
(Ring and group theoretical tools)
['17]: Guarnierị \& Vendramin

Timeline of the study

- Involutive non-degenerate solutions
['99] Etingof, Schedler \& Soloviev
['99] Gateva-Ivanova \& Van den Bergh
['07] Rump
['14] Cedó, Jespers \& Okninski
- Bijective non-degenerate solutions
['00] Lu, Yan \& Zhu
['00] Soloviev
['17] Guarnieri \& Vendramin (Skew braces)

Timeline of the study

- Not necessarily bijective solutions
['17] Lebed (idempotent solutions)
['20] Cvetko-Vah \& Verwimp
(cubic solutions and skew lattices)
['17] Catino, IC \& Stefanelli
(left non-degenerate solutions and left cancellative semi-braces)
['19] Jespers \& Van Antwerpen
(degenerate solutions and semi-braces).
['21] IC, Jespers, Van Antwerpen \& Verwimp
(left non-degenerate solutions \longleftrightarrow Y.B-semitruss).

Examples

Set-theoretic solutions

Example (Rump, 2007)

Let $(R,+, \cdot)$ be a radical ring

$$
r(x, y)=(-x+x \circ y,(-x+x \circ y)) \circ x \circ y)
$$

is an involutive non-degenerate solution:

Example (Rump, 2007)

Let $(R,+, \cdot)$ be a radical ring
Put $x \circ y=x+x y+y$.
R is radical if (R, \circ) is a group

$$
r(x, y)=(-x+x \circ y, \overline{(-x+x \circ y))} \circ x \circ y)
$$

is an involutive non-degenerate solution.

Example (Rump, 2007)

Let $(R,+, \cdot)$ be a radical ring

$$
r(x, y)=(-x+x \circ y, \overline{(-x+x \circ y))} \circ x \circ y)
$$

is an involutive non-degenerate solution.

Skew braces

A skew brace is a triple $(B,+, \circ)$ such that

- $(B,+)$ and (B, \circ) be groups
- for any $a, b, c \in B$

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

If in addition $(B,+)$ is abelian $(B ;+, \circ)$ is a brace or a skew brace

Skew braces

A skew brace is a triple $(B,+, \circ)$ such that

- $(B,+)$ and (B, \circ) be groups
- for any $a, b, c \in B$

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

If in addition $(B,+)$ is abelian $(B,+, \circ)$ is a brace or a skew brace of abelian type.

Examples

Skew braces

Skew braces and solutions

Theorem (Guarnieri and Vendramin, 2017)
Let B be a skew brace. Define $r: B \times B \rightarrow B \times B$ by

$$
r(x, y)=r(-x+x \circ y, \overline{(-x+x \circ y)} \circ x \circ y)
$$

Then r is a bijective non-degenerate solution of the YBE. Moreover,

$$
r \text { is involutive } \Longleftrightarrow(B,+) \text { is abelian. }
$$

The structure group

Definition (Etingof, Schedler and Soloviev, 1992

Let (X, r) be a solution. Define the structure group

$$
G(X, r)=\operatorname{gr}\left(X \mid x \circ y=\lambda_{x}(y) \circ \rho_{y}(x)\right)
$$

From a solution to a skew brace

Theorem (Smoktunowicz and Vendramin, 2018)

If (X, r) is a bijective non-degenerate solution, then there exists a unique skew brace structure on $G(X, r)$ such that its associated solution $r_{G(X, r)}$ satisfies

$$
r_{G(X, r)}(\iota \times \iota)=(\iota \times \iota) r
$$

where $\iota: X \rightarrow G(X, r)$ is the canonical map.
The màin issue of this correspondence is that i is not an injective map in general
Example. Let X be a set, $f, g \in \operatorname{Sym}(X)$ such that $f g=g f$. It is easy to see that

$$
r \text { is injective } \Longleftrightarrow f^{\prime}=\text { id } \Longleftrightarrow r \text { iṣ involutive }
$$

From a solution to a skew brace

Theorem (Smoktunowicz and Vendramin, 2018)

If (X, r) is a bijective non-degenerate solution, then there exists a unique skew brace structure on $G(X, r)$ such that its associated solution $r_{G(X, r)}$ satisfies

$$
r_{G(X, r)}(\iota \times \iota)=(\iota \times \iota) r
$$

where $\iota: X \rightarrow G(X, r)$ is the canonical map.
The main issue of this correspondence is that ι is not an injective map in general.
Example. Let X be a set, $f, g \in \operatorname{Sym}(X)$ such that $f g=g$. . It is easy to see that

$$
r \text { is injective } \Longleftrightarrow \mathrm{fg}=\text { id } \Longleftrightarrow r \text { is involutive }
$$

From a solution to a skew brace

Theorem (Smoktunowicz and Vendramin, 2018)

If (X, r) is a bijective non-degenerate solution, then there exists a unique skew brace structure on $G(X, r)$ such that its associated solution $r_{G(X, r)}$ satisfies

$$
r_{G(X, r)}(\iota \times \iota)=(\iota \times \iota) r
$$

where $\iota: X \rightarrow G(X, r)$ is the canonical map.
The main issue of this correspondence is that ι is not an injective map in general.
Example. Let X be a set, $f, g \in \operatorname{Sym}(X)$ such that $f g=g f$. It is easy to see that

$$
r \text { is injective } \Longleftrightarrow f g=\mathrm{id} \Longleftrightarrow r \text { is involutive }
$$

Goal

The Yang-Baxter equation

The structure monoid and YB-semitrusses
The structure monoid
Semitrusses

The associated solution to a YB-semitruss

References
$16 / 35$

The structure monoid

Definition

Let (X, r) be a solution. Define the structure monoid

$$
M(X, r)=\left\langle X \mid x \circ y=\lambda_{x}(y) \circ \rho_{y}(x)\right\rangle
$$

Examples

Structure groups and structure monoids

Solutions and the structure monoid

Theorem (Gateva-Ivanova and Majid, 2008)

If (X, r) is a solution, then it is possible to extend the solution r to $M(X, r)$, i.e.

$$
r_{\left.M(X, r)\right|_{X \times X}}=r
$$

and the map $\iota: X \rightarrow M(X, r)$ is injective.
Clearly, we cannot expect $M(X, r)$ has a skew brace structure. However, we can have something with the same flavor.

The derived monoid

Let (X, r) be a solution. Define the (left) derived monoid

$$
A(X, r)=\left\langle X \mid x+\lambda_{x}(y)=\lambda_{x}(y)+\lambda_{\lambda_{x}(y)} \rho_{y}(x)\right\rangle
$$

Ex. Let X be a left non-degenerate solution. We can define the (left) derived solution (X, s) in the following way

$$
s: X \times X \rightarrow X \times X, \quad(x, y) \mapsto\left(y, \lambda_{y} \rho_{\lambda_{x}^{-1}(y)(x)}\right)
$$

It is easy to see that $A(X, r)=M(X, s)$.

The connection between structure monoid and derived monoid

Theorem (Lu, Yan and Zhu 2000, Soloviev 2000, Jespers, Kubat and Van Antwerpen 2019, Cedó, Jespers and Verwimp 2021)

Let (X, r) be a left non-degenerate solution. Then λ induces a monoid homomorphism

$$
\lambda:(M(X, r), \circ) \rightarrow \operatorname{Aut}(A(X, r),+)
$$

with $\lambda_{x}(y)=\lambda_{x}(y)$ and there exists $\pi: M(X, r) \rightarrow A(X, r)$ a bijective 1-cocycle with respect to λ (i.e.
$\pi(a \circ b)=\pi(a)+\lambda_{a}(\pi(b))$

The connection between structure monoid and derived monoid

Theorem (Lu, Yan and Zhu 2000, Soloviev 2000, Jespers, Kubat and Van Antwerpen 2019, Cedó, Jespers and Verwimp 2021)

Let (X, r) be a left non-degenerate solution. Then λ induces a monoid homomorphism

$$
\lambda:(M(X, r), \circ) \rightarrow \operatorname{Aut}(A(X, r),+)
$$

with $\lambda_{x}(y)=\lambda_{x}(y)$ and there exists $\pi: M(X, r) \rightarrow A(X, r)$ a bijective 1-cocycle with respect to λ satisfying $\pi(x)=x$.

Hence, we have an embedding

$$
M(X, r) \rightarrow A(X, r) \rtimes \operatorname{Im}(\lambda)
$$

Identifying $a \in M(X, r)$ with $\pi(a)$. The set $M(X, r)$ is equipped with two monoid operations

- $(M(X, r), \circ)$ where \circ is the monoid operation of the structure monoid
- $(M(X, r),+)$ where $a+b=a \circ \lambda_{a}^{-1}(b)$
and satisfies

$$
a \circ(b+c)=a \circ b+\lambda_{a}(c) .
$$

Definition (Brzeziński, 2018)

A semitruss is a quadruple $(A,+, \circ, \lambda)$ s.t.

- $(A,+)$ and (A, \circ) are non-empty semigroups
- $\lambda: A \rightarrow \operatorname{Map}(A, A), a \mapsto \lambda_{a}$ is a mapping s.t.

$$
\forall a, b, c \in A, \quad a \circ(b+c)=a \circ b+\lambda_{a}(c)
$$

Ex. Let (X, r) be a left non-degenerate solution $(M(X, r),+, \circ, \lambda)$ is a semitruss.

It is easy to prove that $(M(X, r),+, \circ, \lambda)$ is a left semitruss such that

- $a+\lambda_{a}(b)=a \circ b$
- $\lambda:(M(X, r), \circ) \rightarrow \operatorname{Aut}(M(X, r),+), a \mapsto \lambda_{a}$ is a semigroup morphism
- $\sigma:(M(X, r),+) \rightarrow \operatorname{End}(M(X, r),+), a \mapsto \sigma_{a}$ is a semigroup anti-morphism such that $a+b=b+\sigma_{a}(b)$, where $\sigma_{a}(b)=\lambda_{a} \rho_{\lambda_{b}^{-1}(a)}(b)$.
- $\lambda_{a} \sigma_{b}=\sigma_{\lambda_{a}(b)} \lambda_{b}$

This leads to
Definition (IC, Jespers, Van Antwerpen, Verwimp, 2021)
A tuple $(A,+, \circ, \lambda, \sigma)$ is a YB-semitruss if

- $(A,+, \circ, \lambda)$ is a semitruss
- $\sigma: A \rightarrow \operatorname{Map}(A, A), a \mapsto \sigma_{a}$ is a mapping
s.t $>\lambda_{a} \in \operatorname{Aut}(A,+)$ and $\lambda_{a} \lambda_{b}=\lambda_{a \circ b}$
- $a+\lambda_{a}(b)=a \circ b$
- $a+b=b+\sigma_{b}(a)$
- $\sigma_{a} \in \operatorname{End}(A,+)$ and $\sigma_{a+b}=\sigma_{b} \sigma_{a}$
- $\sigma_{\lambda_{a}(c)} \lambda_{a}(b)=\lambda_{a} \sigma_{c}(b)$

Examples

- Any skew brace $(B,+, \circ)$ is a YB-semitruss, with respect to the λ map and σ defined by $\sigma_{a}(b)=-b+a+b$.

```
* Let ( }X;r\mathrm{ r) be a left non-degenerate solution: Then
    (M(X,r),+,o,\lambda,\sigma) is a YB-semitruss with
    \sigma
    Ex..For r(x,y)=(y,y), we get }x\circy=y\circy,x+y=y+y
    \lambdax}(y)=y\mathrm{ and }\mp@subsup{\sigma}{y}{}(x)=\mp@subsup{\rho}{y}{}(x)=y
Let A be a set,, \lambda:A->Sym(A) satisfying \mp@subsup{\lambda}{a}{}\mp@subsup{\lambda}{b}{}=\mp@subsup{\lambda}{\mp@subsup{\lambda}{a}{}}{}(b)
Define a a b =b (note that }\mp@subsup{\lambda}{a}{}\in\mathrm{ Aut (A; +)) and
a\circb= \lambdaa}(b),\mp@subsup{\sigma}{b}{}(a)=b. Then (A,+;o,\lambda,\sigma) is
aYB-semitruss.
```


Examples

- Any skew brace $(B,+, \circ)$ is a YB-semitruss, with respect to the λ map and σ defined by $\sigma_{a}(b)=-b+a+b$.
- Let (X, r) be a left non-degenerate solution. Then $(M(X, r),+, \circ, \lambda, \sigma)$ is a YB-semitruss with $\sigma_{b}(a)=\lambda_{b} \rho_{\lambda_{a}^{-1}(b)}(a)$.
Ex. For $r(x, y)=(y, y)$, we get $x \circ y=y \circ y, x+y=y+y$, $\lambda_{x}(y)=y$ and $\sigma_{y}(x)=\rho_{y}(x)=y$.

Examples

- Any skew brace $(B,+, \circ)$ is a YB-semitruss, with respect to the λ map and σ defined by $\sigma_{a}(b)=-b+a+b$.
- Let (X, r) be a left non-degenerate solution. Then $(M(X, r),+, \circ, \lambda, \sigma)$ is a YB-semitruss with $\sigma_{b}(a)=\lambda_{b} \rho_{\lambda_{a}^{-1}(b)}(a)$.
Ex. For $r(x, y)=(y, y)$, we get $x \circ y=y \circ y, x+y=y+y$, $\lambda_{x}(y)=y$ and $\sigma_{y}(x)=\rho_{y}(x)=y$.
- Let A be a set, $\lambda: A \rightarrow \operatorname{Sym}(A)$ satisfying $\lambda_{a} \lambda_{b}=\lambda_{\lambda_{a}(b)}$. Define $a+b=b$ (note that $\lambda_{a} \in \operatorname{Aut}(A,+)$) and $a \circ b=\lambda_{a}(b), \sigma_{b}(a)=b$. Then $(A,+, \circ, \lambda, \sigma)$ is aYB-semitruss.

The associated solution to a YB-semitruss

Theorem (IC, Jespers, Van Antwerpen, Verwimp, 2021)
Let $(A,+\infty, \lambda, \sigma)$ a YB-semitruss. Then

$$
r(x, y)=\left(\lambda_{x}(y), \lambda_{\lambda_{x}(y)}^{-1} \sigma_{\lambda) \times(y)}(x)\right)
$$

is a left non-degenerate solution
Moreover,
Let (X, r) be a left non-degenerate solution then the structure monoid is a YB-semitruss and the solution associated to it is precisely the solution defined by Gateva-Ivanova and Majid with

$$
\left.r_{M(X, r)}\right|_{X \times X}=r
$$

Goal
 The Yang-Baxter equation
 The structure monoid and YB-semitrusses

The associated solution to a YB-semitruss When it is bijective?
An application

References

The associated solution to a YB-semitruss

When it is bijective?
$(A,+, \circ, \lambda, \sigma)$ a YB-semitruss.
r_{A} is bijective $\Longleftrightarrow s_{A}$ is bijective $\Longleftrightarrow \forall a \in A, \sigma_{a}$ is bijective

The associated solution to a YB-semitruss

The opposite YB-semitruss

Theorem

$(A,+, \circ, \lambda, \sigma)$ a YB-semitruss with σ_{a} bijective $(\forall a \in A)$. Then

$$
r_{A}^{-1}(a, b)=\left(\sigma_{a}^{-1} \lambda_{a}(b), \lambda_{\sigma_{a}^{-1} \lambda_{a}(b)}^{-1}(a)\right)
$$

Moreover, $\left(A,+{ }^{o p}, o, \bar{\lambda}, \bar{\sigma}\right)$ is a YB-semitruss with $\bar{\lambda}_{a}=\sigma_{a}^{-1} \lambda_{a}$ and $\bar{\sigma}_{a}=\sigma_{a}^{-1}$.
Its associated solution is r_{A}^{-1}.

A question

Let (X, r) be a left non-degenerate solution. What is the relation between (X, r) being right non-degenerate and r being bijective?

A question

Let (X, r) be a left non-degenerate solution. What is the relation between (X, r) being right non-degenerate and r being bijective?

- Any finite involutive left non-degenerate solution is non-degenerate.
[Rump, 2005]
[Jespers and Okniński, 2005]
- An example of an infinite involutive solution that is left
non-degenerate but not right non-degenerate.
[Rump, 2005]
- Any non-degenerate solution such that $\lambda_{x}=\lambda_{y}$ implies $x=y$ is bijective.
[Cedó, Jespers and Verwimp, 2021]
PAny finite bijective left non-degenerate solution is right
non-degenerate

A question

Let (X, r) be a left non-degenerate solution. What is the relation between (X, r) being right non-degenerate and r being bijective?

- Any finite involutive left non-degenerate solution is non-degenerate.
[Rump, 2005]
[Jespers and Okniński, 2005]
- An example of an infinite involutive solution that is left non-degenerate but not right non-degenerate.
[Rump, 2005]
D. Any non-degenerate solution such that $\lambda_{x}=\lambda_{y}$ implies $x=y$ is bijective
[Cedó, Jespers and Verwimp, 2021]
P. Any finite bijective left non-degenerate solution is right
non-degenerate

A question

Let (X, r) be a left non-degenerate solution. What is the relation between (X, r) being right non-degenerate and r being bijective?

- Any finite involutive left non-degenerate solution is non-degenerate.
[Rump, 2005]
[Jespers and Okniński, 2005]
- An example of an infinite involutive solution that is left non-degenerate but not right non-degenerate.
[Rump, 2005]
- Any non-degenerate solution such that $\lambda_{x}=\lambda_{y}$ implies $x=y$ is bijective.
[Cedó, Jespers and Verwimp, 2021]
> Any finite bijective left non-degenerate solution is right non-degenerate

A question

Let (X, r) be a left non-degenerate solution. What is the relation between (X, r) being right non-degenerate and r being bijective?

- Any finite involutive left non-degenerate solution is non-degenerate.
[Rump, 2005]
[Jespers and Okniński, 2005]
- An example of an infinite involutive solution that is left non-degenerate but not right non-degenerate.
[Rump, 2005]
- Any non-degenerate solution such that $\lambda_{x}=\lambda_{y}$ implies $x=y$ is bijective.
[Cedó, Jespers and Verwimp, 2021]
- Any finite bijective left non-degenerate solution is right non-degenerate
[Castelli, Catino, Stefanelli, 2021]

An application

Theorem
If (X, r) is a finite left non-degenerate solution, then r is bijective $\Longleftrightarrow(X, r)$ is right non-degenerate The implication \Rightarrow has been proven by Castelli, Catino and Stefanelli.

The implication \Leftarrow is based on the fact that the structure monoid is a $Y B$-semitruss.

An application

Theorem
If (X, r) is a finite left non-degenerate solution, then

$$
r \text { is bijective } \Longleftrightarrow(X, r) \text { is right non-degenerate }
$$

The implication \Rightarrow has been proven by Castelli, Catino and Stefanelli.

The implication \Leftarrow is based on the fact that the structure monoid is.a. YB-semitruss.

An application

Theorem
If (X, r) is a finite left non-degenerate solution, then

$$
r \text { is bijective } \Longleftrightarrow(X, r) \text { is right non-degenerate }
$$

The implication \Rightarrow has been proven by Castelli, Catino and Stefanelli.

The implication \Leftarrow is based on the fact that the structure monoid is a YB-semitruss.

Goal
 The Yang-Baxter equation
 The structure monoid and YB-semitrusses
 The asṣociated solution to a YB-semitruss

References

References

T. Brzeziński,

Towards semi-trusses,
Rev. Roumaine Math. Pures Appl. 63(2) (2018), 75-89.
F. Cedó, E. Jespers and J. Okniński,

Braces and the Yang-Baxter equation,
Comm. Math: Phys: 327 (2014), 101-116.
F. Cedó, E. Jespers and C. Verwimp,

Structure monoids of set-theoretic solutions of the Yang-Baxter equation, Publ. Mat., 65:499-528, 2021.
M. Castelli, F. Catino and P. Stefanelli,

Left non-degenerate set-theoretic solutions of the yang-baxter equation and dynamical extensions of q-cycle sets,
Journal of Algebra and Its Applications, 2021.

I. Colazzo, E. Jespers, A. Van Antwerpen and C. Verwimp,

Left non-degenerate set-theoretic solutions of the yang-baxter equation and semitrusses, arXiv:2109.04978, 2021.
V.G. Drinfeld,

On some unsolved problems in quantum group theory,
Quantum Groups, Lecture Notes Math. 1510, Springer-Verlag, Berlin, 1992, 1-8.

T. Gateva-Ivanova and S. Majid,

Matched pairs approach to set theoretic solutions of the Yang-Baxter equation,
J. Algebra 319(4) (2008), 1462-1529.

References

L. Guarnieri and L. Vendramin,

Skew braces and the Yang-Baxter equation,
Math. Comp. 86 (2017), no. 307, 2519-2534.

E. Jespers, $Ł$. Kubat and A. Van Antwerpen,

The structure monoid and algebra of a non-degenerate set-theoretic solution of the Yang-Baxter equation, Trans. Amer. Math. Soc. 372(10) (2019), 7191-7223.
E. Jespers and J. Okniński,

Monoids and groups of I-type,
Algebras and Repres. Theory 8 (2005), 709-729.

V. Lebed and L. Vendramin,

On structure groups of set-theoretic solutions to the Yang-Baxter equation,
Proc. Edinb. Math. Soc. (2), 62(3) (2019), 683-717.

J.-H. Lu, M. Yan and Y.-C. Zhu,

On the set-theoretical Yang-Baxter equation,
Duke Math. J. 104(1) (2000), 1-18.
W. Rump,

Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307 (2007), 153-170.
A. Soloviev,

Non-unitary set-theoretical solutions to the quantum Yang-Baxter equation,
Math. Res. Lett. 7(5-6) (2000), 577-596.

